What drivers phenotypic divergence in Leymus chinensis (Poaceae) on large-scale gradient, climate or genetic differentiation?

نویسندگان

  • Shan Yuan
  • Linna Ma
  • Chengyuan Guo
  • Renzhong Wang
چکیده

Elucidating the driving factors among-population divergence is an important task in evolutionary biology, however the relative contribution from natural selection and neutral genetic differentiation has been less debated. A manipulation experiment was conducted to examine whether the phenotypic divergence of Leymus chinensis depended on climate variations or genetic differentiations at 18 wild sites along a longitudinal gradient from 114 to 124°E in northeast China and at common garden condition of transplantation. Demographical, morphological and physiological phenotypes of 18 L. chinensis populations exhibited significant divergence along the gradient, but these divergent variations narrowed significantly at the transplantation. Moreover, most of the phenotypes were significantly correlated with mean annual precipitation and temperature in wild sites, suggesting that climatic variables played vital roles in phenotypic divergence of the species. Relative greater heterozygosity (HE), genotype evenness (E) and Shannon-Wiener diversity (I) in western group of populations suggested that genetic differentiation also drove phenotypic divergence of the species. However, neutral genetic differentiation (FST = 0.041) was greatly lower than quantitative differentiation (QST = 0.199), indicating that divergent selection/climate variable was the main factor in determining the phenotypic divergence of the species along the large-scale gradient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anatomical and Physiological Plasticity in Leymus chinensis (Poaceae) along Large-Scale Longitudinal Gradient in Northeast China

BACKGROUND Although it has been widely accepted that global changes will pose the most important constrains to plant survival and distribution, our knowledge of the adaptive mechanism for plant with large-scale environmental changes (e.g. drought and high temperature) remains limited. METHODOLOGY/PRINCIPAL FINDINGS An experiment was conducted to examine anatomical and physiological plasticity...

متن کامل

Foliar δ13C response patterns along a moisture gradient arising from genetic variation and phenotypic plasticity in grassland species of Inner Mongolia

Plants depend upon both genetic differences and phenotypic plasticity to cope with environmental variation over different timescales. The spatial variation in foliar δ(13)C levels along a moisture gradient represents an overlay of genetic and plastic responses. We hypothesized that such a spatial variation would be more obvious than the variation arising purely from a plastic response to moistu...

متن کامل

Comparative photosynthetic and growth characteristics of Leymus chinensis and Leymus secalinus in sandy and saline-alkaline soil on the Songnen Plains of China

Leymus chinensis and Leymus secalinus are perennial rhizome grasses; photosynthetic physiological characteristics were compared between them in Sandy and Saline-Alkaline Soils on the Songnen Plains of China. The contents of chlorophyll and soluble saccharides were positively correlated with photosynthetic characteristics. The photosynthetic capacity of L. chinensis was significantly greater tha...

متن کامل

Effects of sampling method on foliar δ13C of Leymus chinensis at different scales

Stable carbon isotope composition (δ (13)C) usually shows a negative relationship with precipitation at a large scale. We hypothesized that sampling method affects foliar δ (13)C and its response pattern to precipitation. We selected 11 sites along a precipitation gradient in Inner Mongolia and collected leaves of Leymus chinensis with five or six replications repeatedly in each site from 2009 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016